CARICA E SCARICA DI UN CONDENSATORE

Professoressa PAOLA CORONA
Nel capitolo «Fenomeni di elettrostatica» abbiamo calcolato il lavoro compiuto da una forza esterna per caricare un condensatore. Il lavoro di carica immagazzina energia elettrica nel condensatore e tale energia resta a disposizione fino a quando non si decide di utilizzarla inserendo il condensatore carico in un circuito.

Il processo di carica

Come variano le grandezze elettriche durante il processo di carica di un condensatore? Consideriamo un circuito in cui sono collegati in serie un generatore di tensione con forza elettromotrice f_{em}, un resistore di resistenza R, un condensatore di capacità C, un amperometro A e un interruttore I.

- Per semplicità, supponiamo che la resistenza interna del generatore sia trascurabile; così la differenza di potenziale ΔV tra i suoi poli è uguale a f_{em}.
Con i dati forniti dall’amperometro al trascorrere del tempo costruiamo il grafico $i-t$, scegliendo come istante iniziale ($t = 0$ s) quello in cui chiudiamo l’interruttore.

All’inizio la corrente è piuttosto intensa: il condensatore è scarico e quindi è facile portare cariche elettriche su di esso. In seguito, le cariche che già si trovano sulle armature tendono a respingere le cariche dello stesso segno che provengono dal generatore; pertanto, il flusso di cariche nel circuito diventa sempre meno rapido, fino ad annullarsi praticamente del tutto.
L’espressione matematica che fornisce il valore dell’intensità di corrente \(i \) in funzione del tempo \(t \) è

\[
i = \frac{f_{em}}{R} e^{-\frac{t}{RC}}
\]

[4]

dove \(e \) è il numero di Nepero: \(e \approx 2,718 \).

Il prodotto \(RC \) è un **tempo caratteristico** del circuito, che misura quanto rapidamente il condensatore di capacità \(C \) si carica (e si scarica) attraverso il resistore di resistenza \(R \).
Anche se, dal punto di vista matematico, la funzione esponenziale [4] non raggiunge mai il valore zero, normalmente si considera che il processo di carica del condensatore sia terminato dopo un tempo

\[t = 5 RC. \]

Bilancio energetico del processo di carica

La corrente descritta dalla formula [4] produce due effetti:
- accumula carica elettrica nel condensatore;
- dissipa energia per effetto Joule nel resistore.

Nel capitolo «Fenomeni di elettrostatica» abbiamo visto che il lavoro di carica del condensatore può essere espresso nella forma \(W_c = \frac{1}{2} Q \Delta V \), dove \(Q \) è la carica che si trova sull’armatura positiva al termine del processo e \(\Delta V \) è la differenza di potenziale che alla fine si stabilisce tra le due armature. Quanto vale \(\Delta V \) nel caso che ora stiamo considerando?
Dato che, dopo un tempo sufficientemente lungo dalla chiusura dell'interruttore (per \(t > 5 \, RC\)), possiamo assumere che l'intensità di corrente sia nulla, attraverso il resistore presente nel circuito, alla fine, il potenziale elettrico non varia più (\(R \, i \equiv 0 \, V\)); quindi la differenza di potenziale finale \(\Delta V\) applicata al condensatore coincide con la forza elettromotrice \(f_{em}\) del generatore (\(\Delta V = f_{em}\)), per cui

\[
W_c = \frac{1}{2} Q f_{em}
\]

D'altra parte, per trasportare la carica \(Q\) da un polo all'altro, cioè spostarla tra due punti la cui differenza di potenziale è costantemente uguale a \(f_{em}\), il generatore compie il lavoro

\[
W_g = Q f_{em}.
\]

Confrontando queste due equazioni vediamo che il lavoro di carica \(W_c\) è la metà del lavoro \(W_g\) del generatore:

\[
W_c = \frac{1}{2} W_g
\]
Per il principio di conservazione dell’energia totale, la restante metà di W_g deve essere stata spesa nell’unico altro modo possibile, cioè dissipata per effetto Joule nel resistore. Così, se si utilizza un condensatore per immagazzinare una certa quantità di energia potenziale elettrica, nel processo di carica se ne dissipa una quantità uguale, che va ad aumentare l’energia interna degli elementi del circuito e dell’ambiente.

Il processo di scarica

Se ora, con il condensatore carico, togliamo dal circuito il generatore, otteniamo lo schema della **FIGURA**. Alla chiusura dell’interruttore I, si crea una corrente che passa attraverso il resistore e scarica il condensatore.
L’intensità della corrente ha lo stesso andamento esponenziale che aveva durante il processo di carica e anche la sua espressione analitica è identica alla [4] (a parte un segno meno, che indica che il verso della corrente è cambiato rispetto a prima).

In effetti, nell’istante in cui chiudiamo I, la differenza di potenziale tra le armature del condensatore è massima, e uguale a f_{em}, per cui la corrente elettrica che si genera nel circuito è relativamente alta. Più tardi, quando il condensatore è parzialmente scarico, la differenza di potenziale è minore; quindi, anche la corrente è meno intensa.

Alla fine del processo di scarica, l’energia che era immagazzinata nel condensatore si è dissipata interamente nella resistenza per effetto Joule.
La carica elettrica del condensatore in funzione del tempo

Nel capitolò «La corrente elettrica continua» abbiamo definito l’intensità di corrente istantanea $i(t)$ come la derivata rispetto al tempo della carica $Q(t)$, che passa per una sezione trasversale di un circuito tra un istante zero fissato e l’istante t. Se il circuito comprende un condensatore, $Q(t)$ rappresenta anche la carica istantanea del condensatore.

La derivata è un’operazione che associa a una funzione un’altra funzione dello stesso argomento: per esempio, associa alla funzione del tempo $Q(t)$ la funzione del tempo $i(t)$. Esiste anche il processo inverso, che fa passare da $i(t)$ a $Q(t)$.

- L’integrale indefinito come inverso della derivata. L’operazione inversa della derivata è chiamata integrale indefinito e, per la funzione $i(t)$, è indicata con il simbolo

 \[\int i(t) \, dt, \]

 che si legge «integrale di $i(t)$ in dt».
Il risultato di questa operazione è una funzione \(q(t) \), chiamata *primitiva* di \(i(t) \), la cui derivata è uguale a \(i(t) \), per la quale, cioè, vale la condizione

\[
\frac{dq(t)}{dt} = i(t)
\]

[5]

L’integrale indefinito è un’operazione con infiniti risultati. La primitiva di una funzione non è mai unica: se, infatti, \(q(t) \) soddisfa la [5], la stessa condizione è soddisfatta da

\[
Q(t) = q(t) + c_i,
\]

dove \(c_i \) è una costante, detta *costante di integrazione*.

Ciò è vero per due proprietà della derivata:

1. la derivata della somma di due funzioni è la somma delle derivate di ciascuna di esse, per cui

\[
\frac{dQ(t)}{dt} = \frac{dq(t)}{dt} + \frac{dc_i}{dt}.
\]

2. la derivata di una costante è uguale a zero, per cui

\[
\frac{dQ(t)}{dt} = \frac{dq(t)}{dt} + 0 = i(t).
\]

Quindi, come suggerisce il nome, l’integrale «indefinito» associa a \(i(t) \) infinite funzioni. Esse differiscono l’una dall’altra per una costante.
In particolare, come si può verificare utilizzando la tabella, per la funzione esponenziale

\[i(t) = \frac{f_{em}}{R} e^{-\frac{t}{RC}} \]

che descrive la corrente durante il processo di carica di un condensatore (equazione [4]), le primitive hanno la forma

\[Q(t) = -Cf_{em} e^{-\frac{t}{RC}} + c_i \]

[6]

<table>
<thead>
<tr>
<th>GLI INTEGRALI INDEFINITI (O PRIMITIVE) DI ALCUNE FUNZIONI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funzione (f(t))</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>(k t^n) (con (n \neq -1))</td>
</tr>
<tr>
<td>(\frac{k}{t})</td>
</tr>
<tr>
<td>(k e^{at})</td>
</tr>
<tr>
<td>(k \cos(at))</td>
</tr>
<tr>
<td>(k \sin(at))</td>
</tr>
</tbody>
</table>

\(a, k e n \) indicano delle costanti; \(c_i \) è la costante di integrazione
L’unico risultato che corrisponde alla realtà fisica. La funzione $Q(t)$ che esprime la carica del condensatore in funzione del tempo è una sola ed è data dalla [6] per un opportuno valore di c_i. Per determinare c_i basta sapere quanto vale $Q(t)$ in un determinato istante, per esempio quello iniziale.

Nel caso considerato, per $t = 0$ s la carica del condensatore è nulla, cioè vale la condizione iniziale $Q(0) = 0$. Imponendo questa condizione, e ricordando che $e^0 = 1$, otteniamo

$$0 = -c_f e_m + c_p$$

da cui

$$c_i = C f_m.$$ \[7\]

Allora, per determinare la funzione $Q(t)$ cercata dobbiamo sostituire la [7] nella [6].
Il risultato è

\[Q(t) = -Cf_{em}e^{-\frac{t}{RC}} + Cf_{em} \]

o anche

\[Q(t) = Cf_{em}(1 - e^{-\frac{t}{RC}}) \]

L'andamento di questa funzione è descritto nella **figura sotto**.

Durante il processo di carica, la carica \(Q(t) \) del condensatore ha un andamento crescente, che tende al valore massimo \(Q_{max} = Cf_{em} \) per \(t \) che tende all'infinito.
Per riassumere,

la carica istantanea \(Q(t) \) di un condensatore (o, in generale, la carica che transita per una sezione di un circuito dall’istante iniziale fino a \(t \)) è la primitiva della funzione \(i(t) \), intensità di corrente, che soddisfa l’appropriata condizione iniziale.